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Abstract

This paper studies how the transmission of monetary policy varies with monetary

policy narratives. Using an AI-based data classification algorithm guided by macroe-

conomic theory, we construct directed graphs of the causal mechanisms described in

FOMC transcripts, which capture the narratives used to justify interest rate decisions.

Even after purging these narratives of predictable components from contemporane-

ous macroeconomic conditions, we find substantial variation in narratives over time.

Clustering the residual graphs yields three recurring types: an inflation narrative, a

finance narrative, and a textbook narrative. Narrative-conditioned local projections

reveal that the transmission of monetary policy is strongly narrative dependent, no

narrative cluster exhibits the canonical joint decline in inflation and output, and the

price puzzle is narrative specific. These results suggest that standard shock measures

average over heterogeneous policy episodes and that narrative measurement provides

a practical way to operationalize this heterogeneity.
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1. Introduction

When studying the transmission of monetary policy, it is critical to understand why inter-

est rates are being changed. Early work recognized the importance of separating exoge-

nous monetary policy shocks from endogenous responses to the macroeconomic environment

(Friedman and Schwartz, 1963; Romer and Romer, 1989; Kuttner, 2001). More recently,

economists have sought to further divide identified shocks into those that communicate new

macroeconomic information to financial markets (i.e., “information effects”) and those that

do not.1 This distinction is important because monetary policy changes that convey infor-

mation about the state of the economy may have very different transmission mechanisms

from those that do not.2 Estimates that fail to distinguish between these types of shocks

conflate their effects and therefore identify neither transmission mechanism cleanly.

However, this is just one way of splitting up monetary policy shocks. In principle, there

may be many different reasons for an unanticipated change in interest rates, and these may

each come with distinct effects on the aggregate economy. In this paper, we take a step

toward uncovering this broader heterogeneity, by analyzing the causal narratives invoked

by central bankers to justify their decisions. We find substantial variation in the effects of

monetary policy shocks depending on the narrative behind them.

Specifically, we combine recent advances in artificial intelligence (AI) tools with theory-

based restrictions to extract the graph of causal relationships embodied in the discussions

recorded in the transcripts of FOMC meetings. Following Eliaz and Spiegler (2020), we

refer to these graphs as the policymaker narratives. Although this is the terminology used

in recent literature, the idea of studying the causal reasoning of policymakers has a longer

history. Romer and Romer (1989) read the same transcripts to manually identify episodes

in which interest rates were raised because policymakers judged a recession was necessary

to bring down excessive inflation. Indeed, they refer to this as the “narrative approach”.

Similarly, Blinder (1995) emphasizes that models involving causal reasoning, even informal

1The pioneering work by Nakamura and Steinsson (2018) documents the information effect of Fed an-
nouncements. Further work by Cieslak and Schrimpf (2019), Jarociński and Karadi (2020), Miranda-
Agrippino and Ricco (2021), and Bauer and Swanson (2023), among others, decomposes the information
contained in monetary shocks.

2Melosi (2017) and de Groot and Haas (2023), for instance, provide evidence on the heterogeneous
transmission mechanisms.
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ones, are at the heart of monetary policymaking.3

We build on and extend these insights. Our approach applies the narrative perspec-

tive systematically on rich text data in FOMC transcripts and lets the data dictate the

dimensions along which monetary policy shocks should be divided. In doing so, we find

that FOMC deliberations are organized around a small number of recurring narrative types,

namely, an inflation narrative, a finance narrative, and a textbook narrative. Importantly,

these narratives are not only descriptive. Conditioning on them in local projections reveals

substantial heterogeneity in output and inflation responses, as well as a narrative-specific

concentration of the price puzzle. This suggests that standard shock measures conflate het-

erogeneous policy episodes with systematically different reasoning used by policymakers and

different associated macroeconomic effects.

Narrative measurement. Our measurement starts with the observation that macroe-

conomic models can be represented as graphs, where causal mechanisms link the relevant

agents, variables, shocks, and forces.4 To make use of this idea, we use a canonical, medium-

scale dynamic stochastic general equilibrium (DSGE) model developed by the Federal Re-

serve Bank of New York (Del Negro et al., 2013) to construct a list of entities that plausibly

capture all the major actors and forces in any policymaker’s subjective model or narrative.

We use this theory-driven entity list to prompt an LLM to scan each FOMC transcript and

capture directed links between entities in sentences. We then construct graphs based on

those identified links to capture the narratives contained in each transcript. Because of the

guidance from theory in the prompt, related terms, such as “interest rates,” “federal funds

rate,” and “policy rate” are extracted as a single entity, “monetary policy,” rather than as

separate nodes, yielding graphs that are interpretable through the lens of economic models.

This use of economic theory to pre-specify the entity list is the novel feature of this

approach relative to existing algorithms to extract graphs from text (e.g., Ash et al., 2024).

This constraint is particularly helpful for causal graphs in monetary policy contexts, where

the relationships described in the text are often complicated and multi-dimensional, where

policymakers may express the same economic concept in varied language, and where there

3He writes specifically that “Some kind of a model — however informal — is necessary to do policy, for
otherwise how can you even begin to estimate the effects of changes in policy instruments?”

4See Auclert et al. (2021) for a recent application of this idea for solving heterogeneous-agent models.
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is a relevant body of theoretical work that can be employed to generate the entity list.

We apply our method to FOMC transcripts from 1967–2011, converting each month’s

text into a weighted, directed graph of narrative links. Because our focus is on narratives that

justify surprises in monetary policy, we purge each graph of links that reflect contemporane-

ous macroeconomic conditions, analogous to the way Romer and Romer (2004) residualize

interest-rate changes with respect to current data. Specifically, we regress each narrative

link’s weight on internal Federal Reserve forecasts of current and next-quarter macroeco-

nomic variables, and retain the residual edge weights. The residualized graphs therefore

capture aspects of central-bank narratives that cannot be predicted by current inflation and

output.

To validate our approach, we show that the residualized graphs for the six contractionary

episodes classified by Romer and Romer (1989) align closely with the narratives those authors

manually coded: in those months, central bankers became more concerned about the effects

of monetary policy on inflation than contemporaneous macro aggregates would predict.

We then cluster the residualized graphs by computing pairwise cosine distances be-

tween narrative graphs and applying spectral clustering to the resulting distance matrix.

This groups months with similar narrative structure. The gap statistic selects the optimal

number of clusters, yielding three clusters that capture the dominant narrative types in the

transcripts. This data-driven approach identifies the natural categories of monetary-policy

narratives without imposing pre-defined labels.

Applying this method, we find that FOMC deliberations repeatedly organize around

three recurring narrative types. The first is an inflation narrative, which frames monetary

policy as a reaction to inflation and emphasizes underlying causes of inflation. The second is

a finance narrative, which highlights financial intermediation, credit conditions and balance-

sheets. The third is a textbook narrative, which centers around the canonical inflation-output

tradeoff of monetary policy. Importantly, these narratives are identified purely based on the

text data and do not rely on information about macroeconomic outcomes.

Heterogeneous transmission of monetary narratives Having partitioned monetary

policy narratives into interpretable clusters, we study whether different rationales for chang-

ing interest rates are associated with different transmission effects. Using local projections
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of macroeconomic variables on monetary policy shocks (Romer and Romer, 2004), we find

substantial narrative-dependent differences in the transmission to both inflation and real

activity. These differences are not limited to peak magnitudes but also involve timing, per-

sistence, and short-run dynamics.

In particular, shocks associated with the inflation narrative generate faster and stronger

disinflation but relatively weak real contraction, while shocks within the finance narrative

cluster show the largest and most persistent decline in real activity but more muted inflation

responses. Shocks accompanied by the textbook narrative lie between these extremes, yet

display an initial rise in industrial production and a price puzzle — both inconsistent with

standard models. No single narrative cluster produces the canonical joint decline in inflation

and output following a contractionary monetary shock predicted by standard theories. More-

over, classic empirical puzzles such as the price puzzle are narrative specific, concentrated

only in the finance and textbook narratives.

The heterogeneous transmission stands in contrast with the monetary transmission un-

der full information rational expectations (FIRE), where a given monetary policy shock

yields identical impulse responses regardless of the reasons behind the policy change. Our

findings therefore implicitly highlight the importance of expectations in the transmission of

monetary policy, and the differential effects that narratives have on those expectations.

Finally, our results also suggest that assessing monetary policy using average impulse

responses can conceal substantial heterogeneity across policy episodes that differ in their

underlying reasoning. As a result, both the canonical joint decline in output and inflation in

response to contractionary monetary shocks and the classic price puzzle may partly reflect

aggregation across episode types. More broadly, narrative measurement provides a prac-

tical way to operationalize heterogeneity in policy reasoning, and thereby refine empirical

assessments of monetary transmission.

Related Literature. This paper relates to three main strands of literature. First, on the

methodological front, we contribute to the growing literature using textual data to address

questions in economics and finance (surveyed by Gentzkow et al., 2019; Ash and Hansen,

2023). Specifically, we develop a method that uses recent advances in large language models

(LLMs) to extract the relationships between economic entities described in texts, in a way
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that makes such causal chains amenable to empirical analysis. This is of particular relevance

to the literature on economic narratives (Shiller, 2017), which can be formalized as graphs

like those we measure in text data (Eliaz and Spiegler, 2020).

There are two main existing approaches to quantifying and testing narratives, both using

text data. Andre et al. (2022) hand-classify the answers to open-ended survey questions on

inflation. This careful manual approach has proven valuable in survey contexts (Haaland et

al., 2024), where the length and the number of documents allow for manual classification.

In contrast, Ash et al. (2024) develops an algorithm to automatically translate texts into

relationship graphs. A key strength of their inductive method — a data-driven approach

that discovers entities and their connections directly from the text without prior domain

constraints — is its versability across social science disciplines.5 We complement their broad

discovery with a deductive approach, anchoring the graph construction around a set of

entities grounded in a canonical structural macroeconomic model. By using a LLM to

capture these theoretically defined nodes, we build on the scalability of the Ash et al. (2024)

approach while ensuring the output is interpretable through theories of monetary policy.

Second, our application relates to the large literature analyzing texts from central banks.

Previous studies have used this rich source of data to infer policymaker preferences (Chappell

et al., 1997; Malmendier et al., 2021; Shapiro and Wilson, 2022), analyze the policymaking

process (Hansen et al., 2018), to study the effects of central bank communication (Hansen

and McMahon, 2016), and to improve the measurement of monetary policy shocks (Aruoba

and Drechsel, 2025). We contribute to this literature by examining changes in central bank

narratives using FOMC transcripts. The rich, high-dimensional nature of text data is im-

portant for this measurement: a single interest-rate change could be consistent with a wide

variety of internal narratives, with different implications for the efficacy of monetary policy

and the accuracy of predictions.

Finally, in pursuing this analysis we also contribute to the broader literature on the

transmission of monetary policy and the content of monetary policy shocks (see reviews in

5Goetzmann et al. (2022) and Macaulay and Song (2022) also provide alternative ways to measure nar-
ratives, but these are specific to particular contexts and do not easily translate to monetary policy analysis.
Similarly, the grammatical rule-based approach of Arold et al. (2025) is valuable when the text of inter-
est consists of tightly defined standardized phrases, such as those seen in legal contexts, but may be less
suited to identifying causal reasoning in informal deliberative discussions where the same relationship may
be expressed in a variety of ways.
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Ramey, 2016; Romer and Romer, 2023; Bauer and Swanson, 2023). An influential strand of

this literature (e.g., Cieslak and Schrimpf, 2019; Jarociński and Karadi, 2020) has made im-

portant progress in separating monetary policy shocks from information effects (emphasized

by Nakamura and Steinsson, 2018) by studying the co-movement between monetary shocks

and other variables. We propose a complementary approach that builds on the seminal

work by Romer and Romer (1989, 2023), which distinguishes different reasons for interest

rate movements based on the way policymakers describe their decisions. Our text-based

approach allows us to be guided directly by policymakers’ own articulated reasoning in dis-

tinguishing different kinds of monetary policy shock. Consequently, we are able to identify

multiple dimensions of heterogeneity that extend beyond what has previously been studied.

2. Data and Methodology

2.1. Data

Our empirical analysis uses historical transcripts of the Federal Open Market Committee

(FOMC) of the Federal Reserve System. The data consists of 531 transcripts from 1967 to

2011, corresponding to approximately one meeting every six weeks. From 1967 to 1976, the

data take the form of Memoranda of Discussion, which provide detailed summaries of the

Committee’s deliberations. Beginning in 1977, the records transition to verbatim Transcripts

of the meetings.

FOMC transcripts are particularly valuable for identifying the reasons behind policy rate

decisions because they provide a verbatim record of the Committee’s deliberations. Their

structured format—beginning with staff presentations on major topics, followed by member-

by-member discussions—makes it possible to observe not only the information available to

policymakers at the time of the meeting, but also how they interpret it. Table 1 reports

summary statistics for this dataset.

We supplement the FOMC transcripts with five additional data sources. First, when

prompting the LLM to capture causal links in FOMC transcripts, we make use of the eco-

nomic relationships contained in the DSGE model developed by the Federal Reserve Bank

of New York (Del Negro et al., 2013). Second, before our empirical analysis, we residualize

our narrative measure with respect to contemporaneous Greenbook staff forecasts of key
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Table 1: Summary statistics: FOMC meeting records (1967–2011)

# of # of words

Documents Mean Median P10 P90 Min Max

All meetings 531 28,536 27,294 4,568 50,868 193 94,826
Memoranda of Discussion 123 24,322 24,338 18,648 31,948 3,112 39,914
Meeting transcripts 303 38,012 33,910 22,023 63,121 12,699 94,826
Conference calls 105 6,128 5,178 1,614 12,866 193 24,227

macroeconomic variables, which proxy for the information about current economic condi-

tions available at each meeting. We use the digitized Greenbook forecast series compiled by

Romer and Romer (2004) and updated by Wieland (2021). Lastly, we run local projections

using CPI and industrial production data obtained from FRED (Federal Reserve Bank of

St. Louis, n.d.a,n), and the narratively identified monthly monetary shocks constructed by

Romer and Romer (2004) and extended by Wieland and Yang (2020).

2.2. Measuring central banks’ models from transcripts

To measure narratives, we begin from the observation that economic narratives can be rep-

resented by graphs that formalize causal relationships. In these graphs, vertices represent

economic entities (such as agents, variables, shocks, and frictions), and edges denote the

causal relationships among them. This approach builds on the broader literature that mod-

els narratives as subjective models of the economy (Eliaz and Spiegler, 2020; Macaulay and

Song, 2022).

Our method consists of three steps. First, we prompt a large language model (LLM)

to extract causal relationships between economic entities from FOMC transcripts. Then, we

use these extracted relationships to construct directed graphs that represent policymakers’

implicit models. Third, we apply tools from network theory to analyze these graphs, includ-

ing constructing differences across meetings using graph distances. The following subsections

describe each step in detail.

2.2.1. Relationships Extraction

We use the frontier, pretrained LLM GPT-5.1 by OpenAI to identify economic entities and

causal relationships among them as described in FOMC transcripts.
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We prompt the LLM to identify four types of entities present in economic frameworks:

(i) actors (such as firms and households), (ii) variables (such as inflation, labor supply etc),

(iii) shocks, and (iv) frictions. The complete entity list we specify is based on a widely used,

medium-scale DSGE model developed by the Federal Reserve Bank of New York (Del Negro

et al., 2013). As a workhorse model used by the central bank to produce regular forecasts,

it provides a comprehensive list of the main entities relevant for economic analysis.

A well-known challenge with named entity recognition is that large text corpora often

yield an intractably large number of identified entities. By pre-specifying a theory-based

entity list in our prompt, we guide the LLM to focus on economically relevant entities,

leveraging the model’s ability to compare semantic similarities between the input text and

the provided entity list. This approach offers two advantages: first, it improves relevance

by ensuring that only economic entities are extracted; second, it reduces dimensionality by

mapping entities with slightly different wording to the single entity specified in the prompt.

Our full prompt is provided in Figure 1. In addition to entities, we prompt the LLM

to extract the causal relationships between the entities by identifying the source and target

entities, as well as describing how the source entity affects the target entity.

We drop any relationships that include entities that are not on the prespecified list

(0.93% of the extracted relationships). The final output contains 35 distinct entities and

54,930 causal relationships between them, averaging approximately 120 causal relationships

per transcript. Appendix Table 2 contains summary statistics of relationships extracted from

the transcripts, and Appendix Figure 9 displays the 15 most frequent entities, with output,

monetary policy and inflation are the top three frequently mentioned entities.
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Figure 1: Prompt for Identifying Causal Relationships

You will be given an excerpt from the FOMC minutes/transcript.

EXCERPT:
{EXCERPT}
Task: Extract causal relationships that are stated or clearly implied in the excerpt.

Causality rule (IMPORTANT):
Treat a statement as causal if it indicates a directional influence, including hedged or qualitative language
such as: “because”, “led to”, “resulted in”, “contributed to”, “put upward/downward pressure on”,
“boosted”, “reduced”, “supported”, “weighed on”, “tended to”, “would/might/could lead to”, “likely
to”, “implies that”. These are EXAMPLES, NOT an exhaustive list.

Treat “suggests/indicates/consistent with” as causal only when the text also states a directional effect
(A affects B).

Set source entity to the driver/cause and target entity to the affected outcome, following the excerpt’s
wording.

Ontology + inclusion rule:
Output a relationship if BOTH source entity and target entity can be mapped to one of the standardized
items below (Actors/Variables/Shocks/Frictions), using phrases that appear in the excerpt (including
synonyms/paraphrases). Do NOT output anything outside the standardized items. Do NOT invent
entities not grounded in the excerpt. If multiple standardized items could fit, choose the best fit from
context.

The specified entities and their standard names are:

• Actors: firms (for firms/entrepreneurs/employers), households (for house-
holds/employees/workers/consumers), government (for government/state), central banks,
commercial banks

• Variables: taxes, labor demand, labor supply, inflation (for price level/inflation), loans (for
loans/credit conditions), capital, output, consumption, investment, deposits, government debt, in-
vestment tools, regulation and supervision (for regulatory tools/banking supervision/financial reg-
ulation), monetary policy (for monetary policy or interest rates), fiscal policy

• Shocks: investment shock, demand shock, spread shock, policy shocks, productivity shocks (for
TFP shocks or productivity shock), labor supply shock, price shock (for markup shock or price
shock), financial crisis, debt crisis, banking crisis, currency crisis, economic crisis

• Frictions: price rigidity, wage rigidity, credit frictions (for credit frictions or financial frictions)

Additional mapping guidance (use only when the phrase appears in the excerpt; NON-EXHAUSTIVE
examples, not a whitelist):

• “interest rates”, “rates”, “federal funds rate”, “policy rate” → monetary policy
• “prices”, “price level”, “price inflation”, “inflation pressures”, “price pressures” → inflation
• “economic activity”, “growth”, “real GDP”, “output growth” → output
• “consumer spending”, “household spending”, “spending” → consumption
• “business investment”, “capital spending”, “capex” → investment
• “credit”, “lending”, “bank lending”, “lending standards”, “credit conditions”, “financial conditions”,

“financing conditions” → loans
• “credit spreads”, “risk premiums” → spread shock
• “liquidity strains”, “funding pressures” → banking crisis OR credit frictions (choose the best fit

from context)

Output format:
Return ONLY a JSON array (no prose, no markdown). Each element must be an object with
"source entity", "target entity", and "description" (brief paraphrase of the causal direction).
Return [] only if there are truly no causal relationships under the rules above.
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Figure 2: Example: GPT Output and Constructed Graph

(a) GPT Output

{"causal relationships": [

{"source entity":"monetary policy",

"target entity":"output"},

{"source entity":"monetary policy",

"target entity":"inflation"}
] }

(b) Constructed Graph

monetary policy inflation

output

1/2

1/2

Notes: Panel (a) reports the GPT output of Alan Greenspan’s speech from the FOMC meeting dated March
22, 1994, quoted in the main text (illustrative). Panel (b) displays the graph constructed based on the GPT
output.

To demonstrate our methodology, we use a paragraph from Alan Greenspan’s speech

from the FOMC meeting on the March 22, 1994:

“One risk is that we might be overestimating the strength of the economy, and

a less accommodative monetary policy might damp its growth too much. [...] It

also may be that this point is significantly different from other points historically,

but my guess is that if we push on this economy, we will get inflation and we will

end the growth.”

This meeting marked the early phase of the Greenspan tightening cycle, a series of rate

hikes after a period of low interest rates following the 1990-01 recession. In the excerpt,

Alan Greenspan, chair of the FOMC, emphasized that despite a potential negative effect

on output of tighter monetary policy (“less accommodative monetary policy might damp

its growth too much”), the lack of tightening will increase inflation (“if we push on this

economy, we will get inflation”).

Panel (a) of Figure 2 displays the GPT output.6 It extracted two causal relationships

from the text: from monetary policy to output, and from monetary policy to inflation. The

6While the prompt instructs the LLM to include a brief textual description of each relationship, this
is only used for ex post verification and not the graph construction step. It is therefore omitted from the
illustrative output shown here.
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output accurately capture the economic entities and causal relationships contained in the

speech. Panel (b) displays the graph constructed based on the GPT output, which we detail

in the next subsection.

2.3. Graph Creation

Based on the identified relationships, we construct directed graphs to represent central bank

models. Each graph is denoted by G = (V,E,W ), where V = {1, ..., n} represents the set of

vertices and E ⊆ V × V represents the set of edges.

To capture the relative importance of relationship, we assume that more frequently

mentioned relationships carry greater significance. We capture this importance using a

weighting function W : E → R that assigns each edge ei,j ∈ E a weight wi,j ∈ R+ equal to

the proportion of times that relationship appears relative to the total number of relationships

identified in that policy meeting. This weighting also renders transcripts with different

lengths comparable. The graph construction is implemented using an off-the-shelf Python

package NetworkX. We apply this method to construct a graph for each transcript in our

dataset, yielding a set of graphs G.7

Figure 2b illustrates the graph creation using the relationships extracted from Greenspan’s

speech. In this simple example, there are two relationships, both originating from the node

“monetary policy”. Therefore, each edge is weighted 1/2 under the weighting function.

Some of the weighted edges captured so far reflect the Committee’s discussions of con-

temporaneous economic conditions and systematic monetary policy responses, rather than

narratives that justify the unsystematic component of monetary policy changes. Because our

focus is on narratives, we purge each graph of links that reflect contemporaneous macroe-

conomic conditions, analogous to the way Romer and Romer (2004) residualize interest-rate

changes with respect to current data. Since most of the additional data we use is measured

at a monthly frequency, we first aggregate the meeting-level graphs within each month by

averaging edge weights across all transcripts that period. This yields a single, weighted graph

per period, with edge weights wijt denoting the average importance of the relationship from

7This measurement approach therefore captures the presence and direction of links, but not the sign of
the causal effect described: statements describing tighter monetary policy causing inflation to go up or down
are treated identically. This is consistent with the formal definition of narratives set out in the theoretical
literature (Eliaz and Spiegler, 2020), though unlike that literature we do not impose that the resulting graphs
must be acyclic.
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node i to node j in time t.

Then, for each pair of nodes i and j, we estimate

wijt = c+ Γ′Zt + ωijt (1)

where Zt is the vector of Greenbook staff forecasts for current and next-quarter macroeco-

nomic conditions.8 We use the residualized weight, ωijt, as the edge weight. The residualized

graphs capture aspects of central-bank narratives that are unrelated to the current state of

the US economy.

2.4. Graph Distance Matrix

Once narratives are represented as graphs, we can apply standard methods from network

theory to analyze them. One aspect that we focus on is the distance between narratives,

which we measure using the cosine distance, a common distance metric in text and network

analysis (e.g. Hoberg and Phillips, 2010; Girardi et al., 2021; Goetzmann et al., 2022).9

For two graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2), the cosine similarity is defined

as:

Sc(G1, G2) =

∑
e∈E W1(e)W2(e)√∑

e∈E W1(e)2
√∑

e∈E W2(e)2
, (2)

where W̃Gi
(e) = Wi(e) if e ∈ Ei (the weight on edge e) and 0 otherwise. The cosine

distance Dc(G1, G2) is then defined as:

Dc(G1, G2) = 1− Sc(G1, G2). (3)

This distance ranges from 0 to 2, where 0 indicates identical weighted edges (up to a

positive scalar multiple), 1 corresponds to unrelated patterns in edge weights (the vector

of edge weights are orthogonal), and approaches 2 as the patterns of edge weights point in

8For each FOMC meeting we use Greenbook projections for the unemployment rate and the growth rates
of real GDP, nominal GDP and the GDP deflator, at the current-quarter and the one-quarter-ahead horizon.

9The cosine distance is preferable to other graph distance measures (e.g. Jaccard distance) here, in
particular because the residualization step described by equation (1) implies our graphs may have both
positive and negative weights. Other alternatives, such as L1 and L2 distances, are more sensitive to changes
in scale, for instance, due to few relationships per meeting.
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opposite directions.10

3. Policymaker Narratives and Monetary Transmission

In this section, we use the graphs extracted from the FOMC transcripts to analyze the

motivations and justifications for monetary policy shocks, and the relationship between the

narrative given for a shock and its subsequent transmission. We find that narratives differ

greatly between periods, and that these distinct types of shock have distinct effects: the

power of monetary transmission varies with the narrative that accompanies it.

3.1. Validation of graph construction methodology

We begin by verifying whether the graphs we extract from FOMC transcripts accurately

capture monetary narratives.

External validation using Romer and Romer narratives. We first compare our ex-

tracted graphs to a commonly used, narratively identified monetary shock series developed

by Romer and Romer (2023), who read the FOMC transcripts and identify six episodes of

unambiguous contractionary monetary policy changes. These six months were “times when

monetary policymakers felt the economy was roughly at potential (or normal) output, but de-

cided that the prevailing rate of inflation was too high.”(Romer and Romer, 2023, pp. 1399).

Since the transcripts in these months have a consistent well-understood narrative, they pro-

vide a clear test of whether our algorithm can extract the relevant mechanisms discussed in

policy meetings.

Figure 3 reports the graph aggregating all causal relationships identified by our algo-

rithm from FOMC transcripts across the six episodes identified by Romer and Romer (2023).

The graph displays edge weights that have been residualized with respect to contempora-

neous macroeconomic conditions. Positive weights (shown in orange) indicate causal links

which are stronger during the six episodes than would be predicted by contemporaneous

macroeconomic conditions, while negative weights (shown in blue) indicate links that are

weaker than would be predicted. Line thickness represents the strength of the link.

10Recall that our analysis will use residualized edge weights (Section 2.3), so edge weights can be positive
or negative.
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Figure 3: Aggregated graph from FOMC transcripts during Romer and Romer (2023)
contractionary episodes

Notes: Figure plots the residualized edge weights for the graphs extracted from the 6 episodes identified as
monetary policy shocks by Romer and Romer (2023) within our sample period (1967-2011). Orange arrows
denote links are more frequently present in those months than is predicted by macroeconomic conditions,
blue arrows denote links that are less frequently present. Line width reflects the magnitude of the residualized
weight.

Consistent with Romer and Romer (2023), the link from monetary policy to inflation

is substantially more prominent in these episodes than average behavior from other periods

would suggest, and the link from monetary policy to output is also positive. At the same time,

all other determinants of output receive less attention than contemporaneous macroeconomic

conditions would predict, consistent with the notion that policymakers judged output to be

at potential.Interestingly, links from monetary policy to loans and to capital (via investment)

also exhibit substantially greater weights in these episodes relative to the remainder of the

sample, patterns not emphasized by Romer and Romer (2023). This finding illustrates how

our AI-driven approach can complement narrative identification and uncover new causal

relationships from even well-studied documents.

Comparison between contractionary and expansionary narratives. Our second

test verifies whether our constructed graphs differ between contrationary and expansionary
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periods, as defined by Romer and Romer (2004) and extended by Wieland and Yang (2020).11

This test serves two purposes. First, it further validates our graph extraction method.

If policy shocks are indeed justified in FOMC meetings and our method successfully detects

those justifications, we should observe substantial differences in graphs extracted from pe-

riods with shocks of opposite signs. Second, it provides insights into how contractionary

shocks are justified relative to expansionary shocks.

Figure 4: Cosine distance between contractionary and expansionary shock periods in the
Wieland and Yang (2020) shock series, compared with the distribution of cosine distances
between randomly drawn graphs.

Notes: Figure plots the histogram of cosine distances between the graphs from random splits of the transcripts
1967-2011 (blue bars). The solid blue line is the cosine distance between the average graphs computed from
all periods with positive (contractionary) and negative (expansionary) shocks in the Wieland and Yang
(2020) extension of the Romer and Romer (2004) monetary policy shock series.

We begin by building two graphs: one that aggregates links across all transcripts from

months with positive Romer and Romer (2004) shocks, and another that does the same for

months with negative shocks. The cosine distance between these graphs is 1.36. To gauge

whether this difference is meaningful, we construct a reference distribution by repeatedly

and randomly splitting the same set of transcripts (those in months with non-zero Romer

and Romer (2004) shocks) into two groups, without regard to shock sign. For each of 100,000

random splits, we construct graphs for the two groups and compute their cosine distance.

Figure 4 summarizes these results. The histogram shows the distribution of distances

11The shocks by Romer and Romer (2004) are constructed differently from the episode-based study by
Romer and Romer (1989, 2023). Specifically, the shocks by Romer and Romer (2004) occur every month,
and are constructed by regressing the intended change in the Federal Funds Rate at each FOMC meeting
on a vector of internal Greenbook forecasts, and then taking the residual. There is, therefore, no selection
based on the narratives or causal arguments made in the FOMC meetings.

15



from the random splits, with the distance obtained from the shock-sign split marked with

a solid line. The observed distance between graphs from contractionary and expansionary

periods lies far in the upper tail: it exceeds 99.86% of distances generated under random

partitioning. This suggests that policymakers use systematically different causal arguments

when delivering contractionary and expansionary shocks, consistent with them providing

narrative justifications for interest rates that deviate from what prevailing macroeconomic

data would predict.

Having confirmed that graphs indeed differ between contractionary and expansionary

periods, we now examine the specific nature of these differences. Figure 5 reports the causal

mechanisms that differ most strongly across periods with contractionary versus expansionary

shocks. Nodes and links that appear more frequently during contractionary shock periods are

shown in orange, while those more prevalent during expansionary shock periods are shown

in blue. Line thickness indicates the magnitude of differences in link prevalence.

Figure 5: Edge weights differences: contractionary vs. expansionary shock periods

Notes: Figure plots the difference in edge weights between graphs extracted from periods with positive
(contractionary) and negative (expansionary) monetary policy shocks in the Romer and Romer (2004) series
extended by Wieland and Yang (2020). Orange arrows denote a link that is more frequently present in months
with contractionary shocks, blue arrows denote a link more frequently present in months with expansionary
shocks. Line width reflects the magnitude of the difference.

Figure 5 highlights a clear divide between the causal narratives accompanying con-

tractionary and expansionary shocks. Contractionary shocks are accompanied by causal

narratives emphasizing how price shocks, output, and monetary policy affect inflation, indi-
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cating a prominent role for supply-side considerations.12 In contrast, expansionary shocks

are accompanied more by narratives involving financial forces, such as the effect of monetary

policy on deposits and loans, as well as direct effects of monetary policy on output.

The Romer and Romer (2004) shocks used here are constructed by purging interest rate

changes of the component predictable from the Federal Reserve’s internal forecasts of output

and inflation. The prominence of inflation in policymaker graphs during contractionary

shocks is not therefore driven by inflation being higher during those months. The differences

we observe in Figure 5 are specific to the sign of monetary policy shocks, not to the prevailing

state of the economy at the time.

3.2. Clustering central bank narratives

The preceding analysis demonstrates large systematic differences between the narratives

accompanying contractionary and expansionary changes in monetary policy. However, this

does not imply that all contractionary periods, or all expansionary periods, have identical

narratives. The results in Figures 4 and 5 reflect average graphs aggregated across all

periods of a given shock sign. We now examine the heterogeneity in narratives underlying

those averages.

Narrative variation between and within shock types. We compare narrative vari-

ation across contractionary and expansionary shocks to variation within each category. To

do so, we construct the “central” graph for each shock sign by averaging all graphs from

periods with contractionary or expansionary Romer and Romer (2004) shocks.

We then compute two sets of cosine distances. The between-type distance measures

the distance between the two central graphs, equivalent to the solid line in Figure 4. This

summarizes the difference between the typical contractionary and expansionary narratives.

The within-type distance measures the average distance between each individual monthly

graph and its group’s central graph, capturing how dispersed narratives are within periods

of the same shock sign. Appendix C.1 provides further details on the calculation of these

distances.

12This interpretation aligns with the six specific contractionary episodes studied by Romer and Romer
(1989, 2023), which were selected as instances where the FOMC unexpectedly shifted preferences towards
prioritizing inflation control, despite our analysis incorporating all contractionary shocks from the econo-
metrically identified series in Wieland and Yang (2020).
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The within-type distance is substantial in both contractionary (0.89) and expansionary

(0.90) periods—nearly two-thirds the magnitude of the between-type distance (1.36). This

indicates that while narratives accompanying contractionary and expansionary shocks differ

systematically on average, there is also considerable heterogeneity within each shock sign.

This heterogeneity has important implications. If the extracted graphs reveal the narra-

tives justifying interest rate decisions that depart from those suggested by contemporaneous

macroeconomic conditions, then not all contractionary shocks are alike, nor are all expan-

sionary shocks. The scalar shock series by Romer and Romer (2004) thus aggregates many

distinct shocks, enacted for different reasons and justified through different causal narratives.

Clustering of narratives. To study this heterogeneity, we partition interest rate decisions

by the monetary narratives that are invoked and study whether the transmission of monetary

policy differs across these narratives. This section describes our procedure for partitioning

the narratives. Rather than imposing an a priori classification, we adopt a data-driven

approach. Specifically, we cluster the extracted graphs using spectral clustering (Ng et

al., 2002). Among clustering methods, spectral clustering provides the cleanest separation

between clusters, as measured by the silhouette coefficient (Rousseeuw, 1987), and exhibits

high stability across random initializations. Appendix C.2.3 shows that our results are robust

to other standard clustering approaches, including k-medoids and agglomerative clustering.

We choose the optimal number of clusters, K, using the gap statistic of Tibshirani

et al. (2001a).13 The gap statistic is positive for all values of K considered, indicating

the presence of clustering, but applying the standard Tibshirani decision rule reveals no

meaningful improvement beyond K = 3. Accordingly, we choose to divide the narratives in

three clusters. This choice is further supported by stability measures, silhouette scores, and

separation metrics, all of which favor K = 3 Appendix C.2.2 contains further details on the

selection of K.14

Figure 6 reports the graphs associated each of the three clusters. Each panel shows the

difference between the average graph constructed from transcripts in a given cluster and the

13The gap statistic compares the observed within-cluster dispersion, WK , to the expected dispersion, W ref
K ,

obtained from reference data generated by permuting edge weights across months to eliminate temporal
structure.

14In Appendix D.3 we repeat the analysis for K = 5. Our main result that different narratives are
associated with different transmission to output and inflation remains robust to this alternative.
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Figure 6: Clusters of monetary policy narratives

(a) The inflation narrative (b) The finance narrative (c) The textbook narrative

Notes: Each panel plots the difference in edge weights between graphs extracted from periods within the
cluster described in the panel label and the average graph extracted from all transcripts in the dataset.
Orange arrows denote a link that is more frequently present in months within the cluster, blue arrows
denote a link less present in the cluster. Line width reflects the magnitude of the difference.

average graph constructed from all transcripts. Orange arrows denote links that are more

prevalent within the cluster, while blue arrows denote links that are less prevalent. Line

thickness reflects the magnitude of the difference.

Cluster (a) exhibits stronger causal links involving inflation than average transcripts,

with several orange arrows connected to the inflation node. This narrative emphasizes two

aspects of inflation. First, it highlights the determinants of inflation: real economic activity

(shown by orange arrows from output and productivity shocks to inflation) and cost pressures

(shown by the link from price shocks to inflation). Second, it frames inflation as the key

driver of monetary policy decisions. The link from inflation to monetary policy is the only

relatively prominent link involving the policy node. Links from monetary policy to other

nodes, including inflation, output, loans, and deposits, appear less frequently than in the

baseline. This pattern suggests that monetary policy is primarily discussed as reactive,

rather than as an independent driver of economic outcomes. Inflation, or inflation risk,

is presented as the central justification for policy tightening or loosening. By contrast,

alternative channels and justifications for policy changes, such as financial-sector conditions

or output dynamics, are mentioned less frequently than in the average transcript, indicating

that they play a secondary role in motivating policy decisions within this narrative. These

features indicate that inflation serves as the central organizing node of this cluster, motivating

our label of Cluster (a) as the inflation narrative.

Cluster (b) shifts the causal framing toward financial intermediaries and balance-sheet
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channels. The graph reveals two key mechanisms. First, a strong link from monetary policy

to loans suggests that policy is framed as operating through credit conditions more fre-

quently than average transcripts. Second, deposits emerge as a central node with multiple

orange links pointing toward it, indicating heightened discussion of deposit dynamics and

related funding conditions relative to average transcripts. Regulation and supervision are

also salient, with prominent orange arrows involving both deposits and loans. In contrast,

inflation-centered causal chains emphasized in Cluster (a) and standard transmission chan-

nels from monetary policy to inflation and output appear less important. These patterns

indicate that, relative to the baseline, meetings in Cluster (b) frame policy decisions primar-

ily through financial-sector conditions, especially credit supply and funding, with inflation-

output tradeoff language playing a comparatively smaller role. We therefore label Cluster

(b) the finance narrative.

Finally, in Cluster (c) the two most prominent orange arrows run from monetary policy

to inflation and from monetary policy to output, indicating that these meetings dispropor-

tionately emphasize monetary policy’s effects on both variables. At the same time, orange

arrows from inflation and output toward monetary policy reveal that these variables are also

discussed more frequently as drivers of monetary policy changes. In contrast, financial inter-

mediation channels and alternative explanations for inflation dynamics are de-emphasized.

These patterns indicate that Cluster (c) frames policy decisions primarily through a conven-

tional inflation-output tradeoff, motivating our label of the textbook narrative.

Notably, these clusters do not overlap with existing attempts to distinguish between

different varieties of monetary policy shocks. Appendix D.5 shows that our clusters are

distributed across periods with both powerful and weak “information effects” as classified

by Jarociński and Karadi (2020), and across periods in which shocks are most powerful at

different points in the yield curve identified by Swanson (2021).

This proliferation of narrative framings we identify is interesting in itself, particularly

for research on central bank decision-making (Hansen et al., 2014, 2018). We now show,

however, that it also matters for understanding how monetary policy affects the aggregate

economy.
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3.3. Do narratives affect shock transmission?

We study whether the narratives that accompany monetary policy shocks affect the trans-

mission of those shocks to the macroeconomy by estimating local projections

log(yt+h)− log(yt−1) =
K∑
k=1

αkh1(clustert = k) +
K∑
k=1

βkh(1(clustert = k)×MPt)

+ Γ′Zt−1 + ut+h, (4)

where yt+h is the outcome of interest (log CPI or log industrial production depending on the

specification) in month t + h; MPt is the monetary policy shock from Romer and Romer

(2004) extended in Wieland and Yang (2020); and Zt−1 is a vector of controls including

twelve lags of log differences in inflation and industrial production and the first difference of

the federal funds rate. This specification mirrors the standard local projection for estimating

monetary policy shock effects (e.g. Jorda and Taylor, 2025), but allows the intercept and

effects of the monetary policy shock to vary by narrative cluster.

The results from estimating (4) are reported in Figures 7 and 8, which show the impulse

responses of cumulative CPI inflation and industrial production growth to a one-percentage-

point contractionary monetary policy shock under a given narrative. The results reveal

substantial heterogeneity in monetary policy transmission depending on the narrative that

accompanies the shock, both in magnitude and timing.

Figure 7: Impulse responses for CPI inflation.
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(a) The inflation narrative
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(b) The finance narrative
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(c) The textbook narrative

Figure 7 reports the cumulative responses of inflation to contractionary monetary policy

shocks. The disinflationary effect is substantially larger for shocks accompanied by the

inflation narrative than for those accompanied by the finance or the textbook narratives.
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Figure 8: Impulse responses for Industrial Production.
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(a) The inflation narrative
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(b) The finance narrative
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(c) The textbook narrative

Notes: Each panel represents the impulse response of CPI inflation (Figure 7) or industrial production
(Figure 8) to a one-percentage-point monetary policy shock (Wieland and Yang, 2020) that occurs alongside
a narrative from a given cluster defined in Figure 6, estimated using the local projection in equation (4).
Dark and light shaded areas present one and two standard deviation confidence intervals, constructed using
heteroscedasticity robust standard errors. Sample: 1969-2007.

When shocks are accompanied by the finance and textbook narratives, inflation initially rises

significantly, declining only at longer horizons (approximately two years after the shock).

In contrast, shocks associated with the inflation narrative lead to no significant inflation

increase on impact, an earlier decline in inflation (around one year after the shock), and a

substantially more pronounced disinflationary effect at medium horizons.

This pattern suggests that the “price puzzle” commonly observed in estimates of mon-

etary policy shocks (see, e.g., Ramey, 2016) is concentrated in Clusters (b) and (c). The

puzzle is most pronounced and persistent for shocks accompanied by the textbook narrative,

even though ex ante, one might expect this cluster to capture the most “pure” monetary

policy shocks.15

Figure 8 displays the cumulative responses of industrial production growth, which also

differ substantially across narrative clusters. The heterogeneity shows up not only in the peak

magnitude of each response, but also in the persistence and short-run dynamics. Monetary

policy shocks associated with the inflation narrative initially produce the largest and most

persistent short-run increase among all clusters, and generate the weakest contraction at

longer horizons. Shocks associated with the textbook narrative exhibit a similar short-run

rise; however, the response turns negative at 6 months after the shock, before recovering. In

15The one- and two-standard-deviation confidence intervals for the inflation response lie entirely above
zero for 17 and 11 months under the textbook narrative, compared to 9 and 4 months under the finance
narrative. Under the inflation narrative, the two-standard-deviation interval never lies fully above zero, and
the one-standard-deviation interval does so only for months 6–8.
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contrast, shocks accompanied by the finance narrative generate the most persistent decline in

industrial production. The contraction magnitude is marginally larger than that of Cluster

(c) at medium horizons, and it remains negative and pronounced over a longer period and

lacks the short-run increase observed in Clusters (a) and (c).

3.4. Discussion

Taken together, our findings in Figures 7 and 8 show that monetary policy shocks exhibit

heterogeneous transmission patterns depending on the narrative accompanying the policy

decision. These differences are visible both in inflation and real activity and are not limited

to peak magnitudes, but also involve timing, persistence, and short-run dynamics. This

highlights that the heterogeneity is multidimensional and cannot be reduced to a single

scalar measure of “strength” or “size” of policy.

Notably, no single narrative cluster delivers the canonical joint response predicted by

standard models, namely a clean and monotonic decline in both inflation and real activity

following a contractionary shock. The inflation narrative is associated with strong disinfla-

tionary effects of monetary policy shocks, but no contraction in output. In contrast, shocks

accompanied by the finance and textbook narratives cause significant real contractions, but

have significant price puzzles at short horizons, and only weak disinflationary effects in

the longer run. This suggests that estimates recovering responses consistent with standard

theories may be averaging over heterogeneous episodes motivated by different reasons for

changing interest rates, with different impacts.

This heterogeneity in transmission stands in sharp contrast with what we would ob-

serve in simple models with full information and rational expectations (FIRE), in which

a given monetary policy shock yields identical impulse responses regardless of the reasons

policymakers have for their actions. Our results therefore suggest an important role for ex-

pectations in monetary transmission, and for the differential effects that narratives have on

expectations. In particular, the costless disinflation we observe after monetary policy shocks

accompanied by the inflation narrative is consistent with those narrative-shock pairs causing

inflation expectations to fall rapidly, as Hazell et al. (2022) and others have argued occurred

in the Volcker disinflation. Exploring this hypothesis, and other potential explanations for

the transmission heterogeneity we observe, is an important direction for future work.
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3.5. Robustness

Appendix D contains four sets of robustness checks. First, we repeat the analysis using

alternative distance measures. Appendix D.1 shows that replacing our baseline cosine dis-

tance with the L1 (Manhattan) or L2 (Euclidean) distance does not qualitatively change

the findings: periods with positive and negative shocks continue to exhibit clearly different

average narratives, and the K = 3 clustering continues to recover qualitatively similar nar-

rative types to those in Figure 6. Moreover, re-estimating the local projections in (4) with

the new clusters generates impulse responses that are very similar to the baseline across

narratives. Relative to our baseline, however, the clusters we find with these alternative

distance measures are somewhat less well separated. This is consistent with the fact that

L1/L2 distances are more sensitive to overall magnitude differences in residual weights, for

instance in low-information months in which few relationships are discussed and the residual

graphs are correspondingly sparse.

Second, we repeat the clustering step using alternative clustering methods (agglomera-

tive hierarchical clustering and k -medoids). Appendix D.2 shows that the extracted narra-

tive types are likewise qualitatively similar to the baseline, with the same broad inflation-,

finance-, and textbook-oriented narratives (though, again, separation is somewhat weaker).

The corresponding narrative-conditioned impulse responses are again similar to our baseline

estimates.

Third, we increase the number of clusters. Increasing the number of clusters to K = 5

continues to recover narrative types that closely align with our baseline clusters, alongside

two additional clusters that capture other justifications for policy changes. Re-estimating the

local projections conditional on narratives yields the same qualitative conclusion: the trans-

mission of monetary policy differs substantially across narrative episodes, and the baseline

patterns for inflation and output responses remain present. For K > 5, spectral clustering

becomes unstable, which is consistent with the gap statistic evidence that clustering gains

are limited beyond a small number of groups.

Fourth, we test if inclusion in each narrative cluster is correlated with other known

sources of state-dependence or non-linearity in monetary transmission identified in the lit-

erature. Inclusion in each cluster is spread across months in which the monetary policy
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shocks had different sizes and signs, and across booms and recessions.16 This suggests that

the narrative-conditioned results do not merely re-label existing state-dependent patterns

emphasized in the literature (Tenreyro and Thwaites, 2016; Ascari and Haber, 2022).

4. Conclusion

Monetary policymakers change interest rates for a wide variety of reasons. Some of these

changes are endogenous responses to macroeconomic conditions. In this paper, we document

that even within exogenous interest-rate shocks, policymakers invoke a range of distinct

justifications that vary over time, and that these “shock narratives” are associated with

strikingly different macroeconomic outcomes.

To measure shock narratives, we use recent advances in AI to construct graphs repre-

senting the causal reasoning employed by the FOMC in its deliberations. We then show

that the transmission of an externally identified monetary policy shock varies substantially

depending on the graph—or narrative—used to justify it. In particular, we identify three

recurring narrative types that do not map cleanly into existing shock classifications: an

inflation narrative, a finance narrative, and a textbook narrative. These narratives also

matter economically. Narrative-conditioned impulse responses show that the disinflationary

effect of a contractionary shock is much larger and faster for shocks accompanied by the

inflation narrative, while it is more muted for shocks accompanied by the finance narra-

tive. In contrast, the finance narrative is associated with a more pronounced and persistent

contraction in industrial production, whereas real effects are substantially weaker under the

inflation narrative. The textbook narrative lies between these two cases along both dimen-

sions. Moreover, the price puzzle is concentrated in the finance and textbook narratives. As

a result, no single narrative cluster delivers the canonical clean joint decline in inflation and

real activity following a contractionary shock. This suggests that textbook average impulse

responses may reflect aggregation over heterogeneous policy episodes motivated by different

reasons for changing interest rates.

These results matter for how monetary policy is evaluated and interpreted. If the

16Note that this finding is not at odds with the result in Figure 4 that on average graphs differ by shock
sign. This is because, as highlighted in Section 3.2, there is a large degree of heterogeneity underlying those
average graphs, such that some narratives appear in both contractionary and expansionary shock periods.
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transmission of a given policy shock depends systematically on the narrative accompanying

the decision, then it is more informative to assess policy through narrative-conditioned re-

sponses than using a single benchmark impulse response. This suggests that from an ex post

perspective, conditioning on narratives provides a more informative basis for interpreting

historical episodes and attributing subsequent movements in inflation and real activity to

policy changes. More broadly, our results support a risk-management view of policy analysis,

where policy assessment may benefit from scenario-dependent ranges of outcomes associated

with different policy episode types rather than relying on one average path.

The results also point to several directions for future work. First, this paper remains

agnostic about the source of the association between narratives and policy transmission.

Relating narrative clusters to intermediate outcomes, including credit conditions, inflation

expectations, and financial market reactions, may help disentangle which channels drive

the cluster-specific responses to policy shocks, and whether narratives mainly proxy for

information effects or for differences in policymakers’ information sets. Second, studying

the relationship between narrative-conditioned transmission and macroeconomic and policy

regimes, such as periods of elevated inflation, episodes of financial stress, or changes in the

policy framework, could clarify whether narrative effects are regime-invariant or whether

narratives interact with broader state dependence in the transmission of monetary policy.

Third, while our analysis relies on FOMC transcripts that are made public with a five-year

lag, the same approach could be applied to faster-release communications (policy statements,

minutes, and press conferences) to assess whether narrative information can be used for

real-time interpretation and forecasting. Finally, applying the framework to other central

banks, historical periods, or policy instruments would shed light on the external validity of

narrative-based heterogeneity in monetary transmission.
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Figure 9: Most frequent entities (source or target).

A. Data

Table 2 shows the summary statistics for the causal relationships extracted from the FOMC

transcripts using an LLM. We drop 0.93% of relationships because they contain entities

beyond our prespecified list of entities (see Section 2), resulting in an average of 102 rela-

tionships per document. Figure 9 shows the 15 entities that occur most of the relationship

data set.

Table 2: Summary statistics of extracted causal relationships (1967–2011)

Statistic Value

Number of extracted relationships 55,443
Dropped (non-whitelisted endpoints) 513
Share dropped 0.93%

Number of extracted relationships 54,930
Number of documents with ≥ 1 relationships 445
Relationships per document (mean) 123.44
Relationships per document (median) 102
Relationships per document (p10) 20
Relationships per document (p90) 249

Unique entities 35
Unique directed pairs 753

Notes: Relationships are extracted from FOMC transcripts and conference calls. The analysis
sample retains only relationships whose source and target entities lie in the prespecified ontology
(Actors/Variables/Shocks/Frictions). “Documents” refers to individual meeting/call records. Per-
centiles are computed over the distribution of relationships per document.
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B. Further validation exercises

Figure 10 plots the histogram of cosine distances between the graphs of random sample

divisions as in Figure 4 using residualized graphs, with a solid line for a split based on the

sign of the interest rate change that month. For comparability with Figure 4, we restrict

the sample for this histogram to all periods where we also have data in the shock series

Romer and Romer (2004) (extended by Wieland (2021)). Figure 11 plots the cosine distance

of random divisions of the observations as well as dividing the observations according to

positive and negative shocks in Romer and Romer (2004) (extended by Wieland (2021)) as

in Figure 4, but using the raw, non-residualized graphs.

Figure 10: Cosine distance between periods with positive and negative interest rate changes,
compared with the distribution of cosine distances between randomly drawn graphs.

Note: Figure plots (in blue) the histogram of cosine distances between the average graphs from random splits of the months
between 1969-2007.The blue line is the cosine distance between the average graphs computed from all periods with positive
and negative changes in the Federal Funds Rate. For comparability, we restrict the sample to periods in which the Romer and
Romer (2004) shock series (extended by Wieland (2021)) is available.

C. Dispersion and clustering

This section provides further details on our empirical method. Section C.1 describes the

calculation of the between vs. within-group dispersion. Section C.2 provides details about

how we choose the clustering method and number of clusters K.
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Figure 11: Cosine distance between contractionary and expansionary shock periods in
the Wieland and Yang (2020) shock series, without residualizing edge weights with respect
to macroeconomic conditions, compared with the distribution of cosine distances between
randomly drawn graphs.

Note: Figure plots (in blue) the histogram of cosine distances between the graphs from random splits of the months between
1969-2007. The blue line is the cosine distance between the average graphs computed from all periods with positive
(contractionary) and negative (expansionary) shocks in the Wieland and Yang (2020) extension of the Romer and Romer
(2004) monetary policy shock series. Unlike Figure 4, this figure is constructed using graphs that have not been residualized
with respect to contemporaneous macroeconomic conditions as described in Section 2.3.

C.1. Further details for Section 3.2

Between vs within-group dispersion details. Let {xt}Tt=1 ⊂ RE
≥0 be monthly graph

vectors (typically
∑

e xt,e = 1). Given a partition into groups g ∈ G with index sets Ig, define

the centroid

cg =
1

|Ig|
∑
t∈Ig

xt (optionally renormalized to
∑
e

cg,e = 1).

Using the cosine distance D(u, v) defined in equation (3), the within-group dispersion is

W =
∑
g∈G

|Ig|
T

1

|Ig|
∑
t∈Ig

D(xt, cg),

and the between-group separation (for two groups g, h) is

B = D(cg, ch).
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The within-group dispersion intuitively describes how far away observations per group are

from their average graph, the between-group separation characterizes how far apart the

groups are from another.

C.2. Further details on the clustering method

This section describes how we choose between different clustering methods and decide on the

number of clusters K. After summarizing how each clustering method works, we proceed in

two steps. First, for each method, we decide on the optimal number of clusters. Second, we

compare the performance of the different algorithms using the the silhouette score, as well

as stability properties. Spectral clustering with K = 3 is our preferred method, but we show

in Appendix D that our results are robust to the choice of K and clustering method.

C.2.1. Clustering methods

Given our non-Euclidean cosine distance measure, we consider three standard clustering

algorithms (using the cosine distance measure defined in Section 2): k-medoids, spectral

clustering and agglomerative spectral clustering. Note that we cannot use k-means since the

cosine distance is non-Euclidean.

• k-medoids: k-medoids selects K representative observations (“medoids”) from the

sample and assigns each observation to the cluster of its nearest medoid (under the

chosen distance measure). The medoids are chosen to minimize the total within-cluster

dissimilarity, i.e. the sum of distances from observations to their assigned medoid

(Kaufman and Rousseeuw, 1990).

• Agglomerative hierarchical clustering: Agglomerative clustering starts with each

observation in its own cluster and repeatedly merges the two closest clusters under a

specified linkage criterion until K clusters remain (Ward, 1963; Everitt et al., 2011).

We use average linkage, which operates directly on the precomputed distance matrix.

Given a fixed distance matrix and linkage rule, the procedure is deterministic.

• Spectral clustering: Spectral clustering transforms the distance matrix into an affin-

ity (similarity) matrix (optionally sparsified using a k-nearest-neighbors graph). It

then computes a low-dimensional embedding from the leading eigenvectors of a graph
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Laplacian constructed from this affinity matrix, and finally applies a standard algo-

rithm (here: k-means) to the embedded points (Ng et al., 2002; von Luxburg, 2007).

This approach is particularly useful when cluster boundaries are non-convex in the

original feature space.

C.2.2. Choosing between different K

We select the number of clusters using the gap statistic of Tibshirani et al. (2001b). For

a given clustering method and number of clusters K, let D(·, ·) denote the cosine distance.

Given a partition into clusters with index sets I1, . . . , IK , we measure within-cluster disper-

sion by the average pairwise distance within clusters,

WK =
K∑
g=1

1

2|Ig|
∑
i∈Ig

∑
j∈Ig

D(xi, xj).

For k-medoids, we instead use its objective value, i.e. the sum of distances from each obser-

vation to its assigned medoid.

We generate B reference datasets by independently permuting each edge weight across

periods, which preserves each edge’s marginal distribution but destroys temporal structure,

and recompute W ref
K for each draw. The gap statistic is

gap(K) = Eref

[
logW ref

K

]
− logWK ,

with standard error

sK =

√
1 +

1

B
sd
(
logW ref

K

)
.

We choose K using the Tibshirani rule, i.e. the smallest K such that gap(K) ≥ gap(K +

1)− sK+1.

Intuitively, the gap statistic compares the within-cluster dispersion in the observed data

to that in reference datasets that have the same marginal distribution of edge weights but

no cluster structure. Larger values of gap(K) indicate stronger evidence of clustering at

K. The Tibshirani rule selects the smallest K such that moving from K to K + 1 does

not yield a meaningful improvement beyond sampling variation in the reference draws, i.e.

gap(K) ≥ gap(K + 1)− sK+1. Figure 12 summarizes the results. Across all three clustering
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Figure 12: Gap statistic across K ∈ {2, . . . , 8}.

Note: The figure plots the gap statistic of Tibshirani et al. (2001b) for each clustering method and number of clusters K,
computed using the cosine distance. Shaded areas indicate ±sK , the standard error of the gap statistic based on the reference
distributions. Gap values are comparable within a given clustering method across different K, but not directly comparable
across methods, since each method induces a different notion of within-cluster dispersion. The dashed vertical line marks the
selected number of clusters, K∗ = 3, according to the Tibshirani rule.

methods, the gap statistic increases sharply from K = 2 to K = 3 and then flattens (or

declines) for larger K, so we set K = 3.

C.2.3. Choosing different clustering methods

To choose between clustering methods at the common K = 3 suggested by the gap statistic,

we compare k-medoids, agglomerative, and spectral clustering using the average silhouette

score across 30 independent initializations.17 In addition, we quantify the stability across runs

using the mean and median adjusted Rand index (ARI)18 . The results are summarized in

Table 3. Since all three methods show good stability properties, we use spectral clustering as

our primary specification, and consider k-medoids and agglomerative clustering as robustness

checks.

The Heatmap 13 confirms that spectral clustering leads to well-separated clusters.

17For agglomerative clustering the runs are identical by construction and the stability metrics are perfect,
as this procedure is deterministic. The stability metrics from repeating over different initializations are
however informative for spectral clustering and k-medoids.

18The adjusted Rand index (ARI) measures the agreement between two clusterings based on pairwise
co-membership of observations. The ARI is corrected for chance, taking the value 1 for identical partitions,
values near 0 for similarity no better than random, and negative values for agreement worse than random.
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Table 3: Comparison of clustering methods at K = 3 using the cosine distance matrix.
smax denotes the best silhouette score over all seeds, s̄ the mean silhouette across 30 runs,
and ARImean / ARImedian the mean/median adjusted Rand index across all pairs of runs for

a given method.

Method K smax s̄ sd(s) ARImean ARImedian

Spectral 3 0.1414 0.1414 0.0000 0.9963 1.000
k–medoids 3 0.1350 0.1315 0.0012 0.9247 1.000
Agglomerative 3 0.1176 0.1176 0.0000 1.0000 1.000

Figure 13: Heatmap visualizing spectral clustering for K = 3.

Note: Months are ordered by cluster, and chronologically within clusters. Blue corresponds to lower cosine distances across
graphs, yellow higher distances. The darker squares along the diagonal indicate that spectral clustering finds meaningful
clusters whose observations are closer to another than to the rest of the dataset.

D. Robustness Checks

This section shows that our results are robust to (i) the choice of distance measure (Section

D.1), (ii) the clustering method (Section D.2), (iii) the number of clusters K (Section D.3

) and (iv) whether we use quarterly or monthly data (Section D.4). Section D.5 shows that

our clusters do not simply reflect existing results on state-dependent monetary transmission

by testing correlations between existing transmission regime classifications and our clusters.

D.1. Results with different distance measures

Figure 14 shows the representative graphs for spectral clustering using L1 (Manhattan dis-

tance) as the distance measure, and Figures 15 and 16 show the corresponding local pro-

jection results; Figures 17-19 show the results using L2 (Euclidean distance) as the distance
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measure. The extracted clusters are qualitatively very similar to the ones using the cosine

distance in the main text.

Figure 14: Clusters using the L1 distance.

(a) Cluster 1: the ”finance nar-
rative”

(b) Cluster 2: the ”textbook
narrative”

(c) Cluster 3: the ”inflation
narrative”

Note: Each panel plots the difference in edge weights between graphs extracted from periods within the cluster described in
the panel label and the average graph extracted from all transcripts in the dataset. The clustering method (spectral
clustering) uses the distance measure L1.

Figure 15: IRFs for CPI inflation - L1 distance.
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(a) Cluster 0: the finance nar-
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(b) Cluster 1: the textbook
narrative
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(c) Cluster 2: the inflation nar-
rative

Note: Each panel plots the impulse response of CPI inflation to a one percentage-point monetary policy shock from the series
by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 14, estimated using the
local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence intervals,
constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

D.2. Results with different clustering methods

This section illustrates that the extracted clusters using spectral clustering are robust to

the choice of clustering method. Figure 20 shows the results for agglomerative hierarchical

clustering; Figure 23 for k-medoid clustering, both using the cosine distance and K = 3.

The representative graphs for each cluster are again very similar to the ones extracted using

spectral clustering.
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Figure 16: IRFs for Industrial Production - L1 distance.
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(a) Cluster 0: the finance nar-
rative
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(b) Cluster 1: the textbook
narrative
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(c) Cluster 2: the inflation nar-
rative

Note: Each panel plots the impulse response of industrial production to a one percentage-point monetary policy shock from
the series by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 14, estimated
using the local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence
intervals, constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

Figure 17: Clusters using L2 distance.

(a) Cluster 1: the ”inflation
narrative”

(b) Cluster 2: the ”textbook
narrative”

(c) Cluster 3: the ”finance nar-
rative”

Note: Each panel plots the difference in edge weights between graphs extracted from periods within the cluster described in
the panel label and the average graph extracted from all transcripts in the dataset. The clustering method (spectral
clustering) uses the distance measure L2.

D.3. Results with different numbers of narrative clusters

This section demonstrates that the qualitative clusters forK = 3 are still visible with a higher

number of cluster. We choose K = 5 since stability of spectral clustering substantially drops

beyond K = 5 (i.e., different runs return different clusters). Figure 26 shows representative

graphs for each cluster. Figures 27 and 28 show the impulse response functions for monetary

policy shocks conditioned on the narrative of inflation and industrial production, respectively.
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Figure 18: IRFs for CPI inflation using clusters of distance measure L2.
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(a) Cluster 0: the inflation nar-
rative
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(b) Cluster 1: the textbook
narrative
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(c) Cluster 2: the finance nar-
rative

Note: Each panel plots the impulse response of CPI inflation to a one percentage-point monetary policy shock from the series
by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 17, estimated using the
local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence intervals,
constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

Figure 19: IRFs for Industrial Production using clusters of distance measure L2.
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(a) Cluster 0: the inflation nar-
rative
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(b) Cluster 1: the textbook
narrative
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(c) Cluster 2: the finance nar-
rative

Note: Each panel plots the impulse response of industrial production to a one percentage-point monetary policy shock from
the series by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 17, estimated
using the local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence
intervals, constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

D.4. Results with quarterly data

This section repeats the baseline exercises from Section 3, but using quarterly data. Figure

29 displays the average graph of Romer and Romer (2023) shock episodes; Figure 30 the

cosine distance histogram of random splits in comparison to splitting the data according to

Romer and Romer (2004) shocks; Figure 31 the narrative difference between positive and

negative Romer and Romer (2004) shocks; Figure 32 illustrates the identified narratives from

spectral clustering; and Figures 33 and 34 show impulse response functions for real GDP

growth and inflation, respectively.
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Figure 20: Clusters using agglomerative clustering.

(a) Cluster 1: the ”inflation
narrative”

(b) Cluster 2: the ”finance nar-
rative”

(c) Cluster 3: the ”textbook
narrative”

Note: Each panel plots the difference in edge weights between graphs extracted from periods within the cluster described in
the panel label and the average graph extracted from all transcripts in the dataset. The clustering method (agglomerative
hierachical clustering, average linkage) uses the cosine distance measure.

Figure 21: IRFs for CPI inflation with clusters using agglomerative hierarchical clustering.
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(a) Cluster 0: the inflation nar-
rative
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(b) Cluster 1: the finance nar-
rative
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(c) Cluster 2: the textbook nar-
rative

Note: Each panel plots the impulse response of CPI inflation to a one percentage-point monetary policy shock from the series
by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 20, estimated using the
local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence intervals,
constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

D.5. Overlap of clusters with other sources of transmission heterogeneity.

Tables 4 and 5 show the fraction of periods in each of the clusters identified in Section

3.2 that correspond to other ways in which monetary policy shocks have been split in the

previous literature, including boom and recession periods, high-shock periods, and shock

categorizations by Jarociński and Karadi (2020) and Swanson (2021).

In general, the clusters we identify do not map closely to any of these series. Cluster 1

(the finance narrative) contains a somewhat larger proportion of recession periods than the

other clusters, but despite this it does not seem that this cluster maps closely to the business

cycle overall: the majority of NBER recession months fall outside of Cluster 1, and the
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Figure 22: IRFs for Industrial Production with clusters using agglomerative hierarchical
clustering.
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(a) Cluster 0: the inflation nar-
rative
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(b) Cluster 1: the finance nar-
rative
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(c) Cluster 2: the textbook nar-
rative

Note: Each panel plots the impulse response of industrial production to a one percentage-point monetary policy shock from
the series by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 20, estimated
using the local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence
intervals, constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

Figure 23: Clusters - k-medoids clustering.

(a) Cluster 1: the ”finance nar-
rative”

(b) Cluster 2: the ”textbook
narrative”

(c) Cluster 3: the ”inflation
narrative”

Note: Each panel plots the difference in edge weights between graphs extracted from periods within the cluster described in
the panel label and the average graph extracted from all transcripts in the dataset. The clustering method (k-medoids) uses
the cosine distance measure.

number of “boom” months is similar in all clusters. That cluster is also more concentrated

in the early part of the sample, but still almost half of the observations in that cluster come

after the change in document style in 1977.

Table 6 then reports the results of three linear probability models, where indicator

variables for membership of each cluster are regressed on the monetary policy and central

bank information shocks from Jarociński and Karadi (2020), and indicators for which of the

Swanson (2021) factors are largest (omitted category: Federal Funds Rate factor). Although

some coefficients are significantly different from 0 at conventional levels, the R2 is very low

in all columns, suggesting that existing shock series cannot explain the clusters we identify.
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Figure 24: IRFs for CPI inflation with k-medoid clusters.
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Note: Each panel plots the impulse response of CPI inflation to a one percentage-point monetary policy shock from the series
by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 23, estimated using the
local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence intervals,
constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.

Figure 25: IRFs for Industrial Production with k-medoid clusters.
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Note: Each panel plots the impulse response of industrial production to a one percentage-point monetary policy shock from
the series by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 23, estimated
using the local projection in equation (4). Dark and light shaded areas present one and two standard deviation confidence
intervals, constructed using heteroscedasticity robust standard errors. Sample: 1969-2007.
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Figure 26: Narrative clusters obtained using spectral clustering with K = 5.

(a) Cluster 1: the “textbook
narrative”

(b) Cluster 2: the “inflation
narrative”

(c) Cluster 3: additional narra-
tive 1

(d) Cluster 4: additional nar-
rative 2

(e) Cluster 5: the ”finance nar-
rative”

Table 4: Overlap between monthly clusters, Romer–Romer shocks, recessions, and booms

Cluster 0 Cluster 1 Cluster 2

n 171 136 106
Fraction high |shock| 0.019 0.069 0.087
Fraction recession 0.164 0.221 0.132
Fraction boom 0.281 0.243 0.226
Fraction pre-1977 0.146 0.537 0.151
Avg relationships 120.32 163.97 113.62
Avg RR shock 0.033 -0.023 -0.020

Notes: “High |shock|” indicates months flagged with high absolute
Romer and Romer (2004) shocks (2 std from mean). “Boom” is
defined as months in which log real GDP growth is in the top quar-
tile of the observation periods in our sample.a “Recession” is de-
fined using the NBER business-cycle chronology (National Bureau
of Economic Research, 2025). Fraction pre-1977 reports the share
of months dated 1976 or earlier. Average relationships is the mean
number of extracted causal relationships per month. Avg RR shock
is the mean Romer–Romer monetary policy shock. For comparison,
the standard deviation of the Romer–Romer shock is 0.234.

aReal GDP is from the U.S. Bureau of Economic Analysis (NIPA) (U.S. Bureau of Economic Analysis,
n.d.) as provided by FRED (series GDPC1) (Federal Reserve Bank of St. Louis, n.d.c).
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Figure 27: Local projections for CPI inflation using clusters for K = 5.
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Figure 28: Local projections for industrial production using clusters for K = 5.
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(c) Cluster 2: additional narra-
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Figure 29: Edge weights in causal graph extracted from the 6 periods identified as contrac-
tionary monetary policy shocks in Romer and Romer (2023). Panel A: total edge weights;
Panel B: edge weights in comparison to the average graph over all months.

Figure 30: Cosine distance between contractionary and expansionary shock periods in the
Wieland and Yang (2020) shock series, compared with the distribution of cosine distances
between randomly drawn graphs.

Note: Figure plots the histogram of cosine distances between the graphs from random splits of the transcripts 1969-2007 (blue
bars). The solid blue line is the cosine distance between the average graphs computed from all periods with positive
(contractionary) and negative (expansionary) shocks in the Wieland and Yang (2020) extension of the Romer and Romer
(2004) monetary policy shock series.
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Figure 31: Differences in edge weights between contractionary and expansionary shock
period graphs.

Note: Figure plots the difference in edge weights between graphs extracted from periods with positive (contractionary) and
negative (expansionary) monetary policy shocks in the Romer and Romer (2004) series extended by Wieland and Yang
(2020). Orange arrows denote a link that is more frequently present in months with contractionary shocks, blue arrows denote
a link more frequently present in months with expansionary shocks. Line width reflects the magnitude of the difference.

Figure 32: Clusters using spectral clustering.

(a) Cluster 0: the finance nar-
rative

(b) Cluster 1: the inflation nar-
rative

(c) Cluster 2: the textbook nar-
rative

Note: Each panel plots the difference in edge weights between graphs extracted from periods within the cluster described in
the panel label and the average graph extracted from all transcripts in the dataset. Orange arrows denote a link that is more
frequently present in months within the cluster, blue arrows denote a link less present in the cluster. Line width reflects the
magnitude of the difference.
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Figure 33: IRFs for real GDP, quarterly data, K = 3.
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Note: Each panel plots the impulse response of real GDP growth to a one percentage-point monetary policy shock from the
series by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 32, estimated using
the local projection in equation (4), with 4 lags in Zt−1 rather than the 12 in the monthly specification. Dark and light
shaded areas present one and two standard deviation confidence intervals, constructed using heteroscedasticity robust
standard errors. Sample: 1969-2007.

Figure 34: IRFs for Inflation, quarterly data, K = 3.
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Note: Each panel plots the impulse response of CPI inflation to a one percentage-point monetary policy shock from the series
by Wieland and Yang (2020) that occurs alongside a narrative from a given cluster defined in Figure 32, estimated using the
local projection in equation (4), with 4 lags in Zt−1 rather than the 12 in the monthly specification. Dark and light shaded
areas present one and two standard deviation confidence intervals, constructed using heteroscedasticity robust standard errors.
Sample: 1969-2007.
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Table 5: Overlap between monthly clusters, “Poorman” shocks, and factor classifications

Cluster 0 Cluster 1 Cluster 2

Panel A: Within cluster: share of months that are indicator months
MP shock (Poorman) 0.44 0.50 0.59
CBI shock (Poorman) 0.27 0.28 0.19
FFR largest 0.33 0.32 0.27
FG largest 0.54 0.41 0.67
LSAP largest 0.17 0.29 0.08

Panel B: Within indicator: share of indicator months in each cluster
MP shock (Poorman) 0.43 0.22 0.35
CBI shock (Poorman) 0.54 0.24 0.22
FFR largest 0.52 0.21 0.27
FG largest 0.48 0.15 0.37
LSAP largest 0.50 0.36 0.14

Notes: Unit of observation is a month. Poorman shock indicators equal one if the corresponding
monthly shock series is nonzero in the “poor man’s sign restrictions” exercise in Jarociński
and Karadi (2020) (available from February 1990). Factor indicators equal one if, in at least
one FOMC meeting during the month, the stated factor has the largest absolute magnitude
among the {FFR, FG, LSAP} factors identified by Swanson (2021) (available from July 1991).
Denominators vary by indicator due to data availability; months may have multiple indicators
equal one.

Table 6: Explaining cluster assignment: baseline specification

Cluster 0 Cluster 1 Cluster 2

MP shock (Poorman) 1.206 -1.321 0.115
(0.410) (0.605) (0.641)

CBI shock (Poorman) 0.661 -0.867 0.207
(1.904) (1.440) (1.097)

FG (largest) -0.067 -0.035 0.102
(0.088) (0.068) (0.083)

LSAP (largest) -0.044 0.206 -0.161
(0.123) (0.112) (0.090)

Constant 0.548 0.174 0.278

Observations 167 167 167
R2 0.026 0.083 0.042
Adj. R2 0.002 0.060 0.018

Notes: Each column reports a separate linear probability model where
the dependent variable equals one if the month is assigned to the
corresponding cluster. MP and CBI are monthly Poorman monetary
policy shocks entering linearly. The dominant policy instrument is
captured by categorical indicators for FG and LSAP, with FFR as
the omitted category. Robust (HC1) standard errors are shown in
parentheses.
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